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been modelled by a discrete kinetic equations for the number densities of bubbles
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1 Introduction

There are simple kinetic models of irreversible aggregation, in which a cluster
with k monomers grows by absorbing one monomer but it cannot decrease
in size by shedding part of its mass. An interesting example is the forma-
tion and growth of helium bubbles in plutonium alloys as a consequence of
alpha decay due to self-irradiation [1,2]. As an alloy ages, there is an initial
transient stage during which self-irradiation produces dislocation loops that
tend to saturate within approximately two years. The alpha particles created
during irradiation become helium atoms. These atoms come to rest at unfilled
vacancies generated during their slowing-down process, before they are cap-
tured at existing helium bubbles. A helium atom diffuses through the lattice
until it finds another helium atom thereby forming a stable dimer or until it
finds a helium bubble (a stable cluster with k atoms or, in short, a k-cluster),
which absorbes it. Helium bubbles are attached to lattice defects, do not move
and do not shed helium atoms because the binding energies of helium to any
cluster are extremely high [2]. The following kinetic model based on these
observations has been proposed by Schaldach and Wolfer [1]:

ρ̇k = 4πD c̃ ak−1ρk−1 − 4πD c̃ akρk, k ≥ 3, (1)

ρ̇2 = 8πD c̃2 a1 − 4πD c̃ a2ρ2, (2)

c̃ +
∞
∑

k=2

kρk =

t̃
∫

0

g(t′) dt′. (3)

Here ρ̇k = dρk/dt̃, ρk is the number density of k clusters having effective radii
ak (when the center of a monomer comes within distance ak of the cluster
center, it is absorbed), c is the number of monomers per unit volume, D is
the diffusion coefficient and g(t̃) is the number of monomers created per unit
volume and per unit time. Eq. (3) means that the total number of monomers
per unit volume, whether they are in solution or forming part of a k cluster,
should equal the time integral of g(t̃). In Equations (1) and (2), k clusters
grow by adding one monomer with a rate 4πDc̃ak−1 (for k > 2) to a k − 1
cluster, and they do not decay. The mean absorption rate of a monomer by
an immobile k cluster (with k > 1) is 4πDc̃ak, whereas the rate of creation
of an immobile dimer by the collision of two mobile monomers is twice this
quantity, 8πDc̃a1. The absorption rate can be calculated immediately from
the concentration field outside a k cluster (i.e., the number of monomers per
unit volume in r̃ > ak), ρ(r̃, t̃). In the process of diffusion-limited adiabatic
growth of diluted clusters (such that a3

kρk ≪ 1), ρ(r̃, t̃) solves the Laplace
equation outside r̃ = ak, with ρ(ak, t̃) = 0, and it takes on the value c̃(t̃) (the
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monomer density in solution) as r̃ → ∞. Thus

ρ(r̃, t̃) = c̃(t̃)
(

1 − ak

r̃

)

,

for r̃ > ak. The mean absorption rate of monomers by the k cluster is

4πa2
kD

∂ρ

∂r̃
(ak, t̃) = 4πDc̃ak. (4)

The simplest model for the effective radius of a k cluster is based on packing
of non-overlapping particles:

ak = a1 k1/3. (5)

It is interesting to observe that a related kinetic system was proposed and
solved in 1914 by McKendrick as a model of leucocyte phagocytosis [3]. In
McKendrick’s model, ρk is the density of leucocytes which have ingested k
bacteria, and its rate equation is (1) for k ≥ 0, with a known function of time
c̃(t̃) > 0 and ρ−1 ≡ 0. McKendrick’s solution method involved solving the
equation for ρ0 in terms of

∫

c̃ dt̃ and solving recursively all other equations
for ρk as functions of ρ0. His method cannot be used to solve the system (1)
- (3), but an useful closure of this infinite system to only three differential
equations was introduced in [1], and compared to experiments, [1,2].

In this paper, we shall study the solution of the system (1) - (3) starting from
an initial condition corresponding to the absence of helium bubbles, i.e.,

c̃(0) = 0, ρk(0) = 0, for k ≥ 2. (6)

We shall consider the case of a constant production rate of helium atoms,
g(t̃) = g t̃. Once c̃(t̃) as been found, the total density of bubbles can be obtained
by integrating the equation:

d

dt̃

∞
∑

k=2

ρk = 8πDa1c̃
2. (7)

Eq. (7) is immediately obtained by adding (2) and (1) (for all k ≥ 3).

We have found that, after a short transient, the size distribution function
becomes a smooth function of k and it is a functional of the monomer con-
centration. In turn, the monomer concentration satisfies an integrodifferential
equation. The size distribution function can be approximated by matched
asymptotic expansions. Except for large k, its form is close to the solution
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of the hyperbolic equation resulting from replacing derivatives instead of dif-
ferences in (1), but including corrections due to discreteness. This outer ap-
proximation breaks down at large k: it has an unrealistic large peak at a
maximum value of k after which the distribution function abruptly falls to
zero. If our governing equations were partial differential equations instead of
differential-difference equations, we would say that a boundary layer should
be inserted to remedy this imperfection. However, the concept of boundary
layer is not straightforward for discrete equations. How do we insert a bound-
ary layer approximation to difference equations? The answer to this question
lies in the wave front expansion of the Becker-Döring equations some of us
introduced in Ref. [4]. This theory yields one equation for the leading edge of
the size distribution function and one equation for the distribution function
itself near its edge. A solution of the latter written in similarity variables is
then matched to the outer approximation and its contribution to the integral
terms of the equation for the monomer concentration is calculated. These two
steps were not needed for the nucleation calculation in Ref. [4] because there
the outer approximation was a constant, size-independent profile and the in-
tegral condition was identically satisfied during the nucleation transient. The
present overall theory including outer and boundary layer approximations de-
scribes quite well the observed numerical simulations of the discrete system of
equations.

The rest of the paper is as follows. The nondimensional equations of the model
are derived in Section 2. The outer approximation to the size distribution func-
tion and the monomer concentration is described in Section 3. The boundary
layer analysis is given in Section 4. Sec. 5 compares the present theory to a
simple system of three differential equations for the helium density, the bub-
ble density and the monomer concentration obtained by closing the moment
equations for the size distribution according to a simple ansatz introduced
in [1]. The last section summarizes our conclusions, and technical details are
relegated to Appendices.

2 Nondimensionalization of the kinetic equations

Let [t], [k], [c̃], [ρ] be typical units of time, cluster size, monomer concentra-
tion and cluster density, respectively. Equations (1), (7) and (3) provide the
following dominant balances between these scaling units:

[ρ]

[t̃]
= 4πD [c̃] a1

[k]1/3[ρ]

[k]
, (8)

[ρ] [k]

[t̃]
= 4πD [c̃]2 a1, (9)
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[k]2[ρ] = g [t̃]. (10)

To derive these equations, we have assumed that there is a continuum limit
with k ≫ 1 and that the number density of particles in clusters,

∑

∞

k=2 k ρk,
is much larger than the monomer concentration c. Note that we have three
relations (8) - (10) for four unknowns [t̃], [k], [c̃], [ρ]. In the absence of another
relation (for example, a different creation rate g(t̃) = G(t̃/τ), which fixes the
time scale [t̃] = τ), we can express three of these scaling units in terms of the
fourth. We find

[t̃] =
[k]7/6

√
4πDa1g

, [c̃] =

√

g

4πDa1
[k]−1/2, [ρ] =

√

g

4πDa1
[k]−5/6. (11)

We shall now define nondimensional units as

t =
t̃

[t̃]
≡ κ−7/6 t̃

√

4πDa1g,

c =
c̃

[c̃]
≡ κ1/2c̃

√

4πDa1

g
,

rk =
ρk

[ρ]
≡ κ5/6ρk

√

4πDa1

g
, (12)

in which we have set [k] = κ (any positive number). Equations (1) - (3) and
(7) become

drk

dt
= c κ2/3 [(k − 1)1/3rk−1 − k1/3rk], k ≥ 3, (13)

dr2

dt
= 2κ c2 − κ2/321/3c r2, (14)

κ−5/3c + κ−2
∞
∑

k=2

krk = t, (15)

d

dt

∞
∑

k=2

rk = 2κ c2. (16)

Our nondimensional system of kinetic equations comprises (13) - (15) with
κ = 1 and initial conditions rk(0) = 0, c(0) = 0. (16) is a consequence of the
previous equations or it can be used instead of (14). Defining an adaptive time
s =

∫ t
0 c(t′) dt′, we can rewrite our system in the more convenient form:

drk

ds
= (k − 1)1/3rk−1 − k1/3rk, k ≥ 3, (17)
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dr2

ds
= 2c − 21/3r2, (18)

c +
∞
∑

k=2

krk = t, (19)

ds

dt
= c, (20)

with initial conditions c(0) = rk(0) = 0 (k ≥ 2) and t(0) = 0. In order to
integrate this system of equations, it is convenient to time differentiate (19)
and use (20). The result is

c
dc

ds
+ 4 c2 + c M1/3 = 1, (21)

in which we have defined the moments of the size distribution function rk(s):

Mµ(s) =
∞
∑

k=2

kµrk. (22)

M0 and M1 are the number densities of bubbles and of helium, respectively.
They satisfy:

dM0

ds
= 2c, (23)

dM1

ds
= 4c + M1/3, (24)

with zero initial conditions.

The kinetic equations describing formation of helium bubbles are therefore
(17), (18), (20), (21) and (22) with zero initial conditions. These equations
yield the monomer concentration c and the size distribution function rk. The
number densities of bubbles and of helium are given by (23) and (24).

3 Outer solution and relation to the continuum limit equations

3.1 Continuum limit and similarity solution

A first attempt at approximating the model equations consists of taking the
continuum limit of (17) - (20). In fact, assume that
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rk(s) = r(k, s), (25)

and Taylor expand r in (17) up to first order terms. The result is

∂r

∂s
+

∂

∂k
(k1/3r) = 0, (26)

∞
∫

0

k r dk = t. (27)

We have ignored the monomer concentration in (27). Integrating (26) over
k > 0, we obtain

d

ds

∞
∫

0

r dk = lim
k→0

(k1/3r),

and (23) implies the following signaling condition:

lim
k→0

(k1/3r) = 2c. (28)

The method of characteristics provides the following solution to (26) and (28)
with initial condition c(0) = 0:

r(k, s) = 2k−1/3 c (s − a(k)) θ (s − a(k)) , (29)

a(k) =
3

2
k2/3, (30)

in which θ(x) = 1 if x > 0 and θ(x) = 0 if x < 0 is the Heaviside unit step
function. After a change of variable, the integral condition (27) becomes

2
(

2

3

)3/2 s
∫

0

(s − s′)3/2 c(s′) ds′ = t, (31)

or, equivalently,

2
(

2

3

)1/2

c(s)

s
∫

0

(s − s′)1/2 c(s′) ds′ = 1. (32)

The problem (26) - (28) and (31) has a similarity solution whose role will be
discussed later. In fact, note that (26) - (28) are invariant under the scaling
transformation r → κ−5/6r, c → κ−1/2c, s → κ2/3s, t → κ7/6t, k → κk, which is
suggested by the nondimensionalization (12). Therefore the combinations χ =
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k s−3/2 and ρ = s5/4r are invariant under the previous scaling transformation.
In terms of ρ = ρ(χ), (26) becomes

dρ

ds
=

ρ

3χ

15
4

χ2/3 − 1
3
2
χ2/3

, (33)

ρ = s5/4 r, χ = k s−3/2. (34)

The solution of (33) is

r(χ, s) =
R0s

−5/4χ−1/3

(

1 − 3
2
χ2/3

)3/4

+

. (35)

Here R0 is a positive constant and (x)+ = x θ(x). This similarity solution has
integrable singularities at χ = 0 and at χ = χ0 ≡ (2/3)3/2 (corresponding to
the maximum cluster size kf(s)). Now the signaling condition (28) yields the
monomer concentration:

c(s) =
1

2
R0 s−3/4, (36)

and (20) together with s(0) = 0 yield the relation between s and the time:

s =
(

7

8
R0 t

)4/7

. (37)

The constant R0 is found by inserting (36) in (32), which yields R2
0

√

2/3B(3/2, 1/4) =
1, from which,

R0 =
(27π)1/4

Γ(1/4)
≈ 0.837042. (38)

The self-similar size distribution function has a singularity at its maximum
size χ = χ0. Fig. 1 shows that this solution is a relatively poor approximation
to the numerical solution of the full model. To improve it, we can take into
account the effects of discreteness by replacing 1 + 3s−1 − 3χ2/3/2 instead of
1 − 3χ2/3/2 in (35). Then the singularity of the self-similar size distribution
function moves closer to the local maximum of the exact numerical solution
and the approximation improves, as shown in Figure 2. We observe that the
singularity of the self-similar size distribution function occurs before the nu-
merical size distribution function reaches its local maximum, and this effect
becomes more noticeable as time increases.
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Fig. 1. Nondimensional size distribution function rk(t) evaluated by solving the full
model system of discrete equations (solid line) and the similarity solution (dashed
line) at the nondimensional times 100, 200, 300, 400 and 500.
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Fig. 2. Same as Fig. 1 but now the dashed line is the similarity solution corrected
by replacing 1 + 3s−1 − 3χ2/3/2 instead of 1 − 3χ2/3/2 in (35).

3.2 Outer solution for the discrete problem

The similarity solution of the continuum equations is a poor approximation to
the numerical solution of the discrete model. We need to correct it by including
the effects of discreteness and by approximating better the equation for the
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monomer concentration. The corrections due to discreteness can be found by
first solving the linear equations (17) exactly. Laplace transforming (17) and
using rk(0) = 0, we obtain

r̂k(σ) =
(k − 1)1/3r̂k−1

σ + k1/3
, (39)

for k > 2, from which it follows:

k1/3 r̂k(σ) = 2 ĉ(σ) R̂k(σ), (40)

R̂k(σ) ≡
k
∏

j=2

1

1 + σ j−1/3
, (41)

rk(s) = 2k−1/3

s
∫

0

Rk(s − s′) c(s′) ds′. (42)

These equations give the exact size distribution function in terms of c(s).
Inserting (42) in the definition of M1/3 and substituting the result in (21), we
obtain

c
dc

ds
+ 4c2 + 2 c

s
∫

0

[
∞
∑

k=2

Rk(s − s′)] c(s′) ds′ = 1. (43)

This integrodifferential equation for c should be solved using the initial con-
dition c(0) = 0. Unfortunately, it is not too useful because the integral kernel
is written as an infinite series of the inverse Laplace transform of (41), which
is rather unwieldly.

To find an approximate form of Eq. (43), we assume that Rk(s) is peaked
about its mean value:

a(k) ≡
∫

∞

0 s Rk(s) ds
∫

∞

0 Rk(s) ds
= −R̂′

k(0)

R̂k(0)
=

k
∑

j=2

j−1/3. (44)

In Appendix A, we show that

a(k) ∼ 3

2
k2/3 − 3 +

1

2 k1/3
(k → ∞). (45)

We also show that the relative width of the peak in Rk(s), σ/a ∼ 2k−1/2/
√

3
tends to 0 as k → ∞. If we assume that c(s) is a smooth function (and this is
not always the case), then we may approximate the kernel in the convolution
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integral (42) by Rk(s) ∼ δ (s − a(k)), so that the size distribution function is
given by (29) with a(k) replaced by (45). Note that the first term in the right
hand side of (45) coincides exactly with the result (30) obtained by solving
the continuum equations (26) and (28). Equation (43) becomes

c
dc

ds
+ 4c2 + 2c

∑

k=2, a(k)<s

c(s − a(k)) = 1. (46)

For large s, the maximum cluster size is such that a(kf) ∼ 3k
2/3
f /2 − 3 = s.

Then we can approximate the sum in (46) by an integral over k from k = 0
to k = kf(s). Changing variables in the integral, (46) becomes

c
dc

ds
+ 4c2 + 2

√

2

3
c

s
∫

0

(s − s′ + 3)1/2 c(s′) ds′ = 1. (47)

We would like to compare now the solution of (29), (45), (47) and (20) with
zero initial conditions to the numerical solution of the exact discrete model.
To this end, it is better to write all unknowns as functions of the time t. Our
local theory is then

rk(t) = 2k−1/3 c(s(t) − a(k)) θ(s(t) − a(k)),

dc

dt
+ 4c2 + 2

√

2

3
c

t
∫

0

[s(t) − s(t′) + 3]1/2 [c(s(t′))]2 dt′ = 1, (48)

ds

dt
= c,

c(0) = s(0) = 0.

Figure 3 shows a comparison between the monomer concentration evaluated by
solving the full discrete model equations, the local theory (48), the similarity
solution and the three moment equations used by Wolfer and coworkers (cf.
Section 5 and [1]). In Fig. 3(a), we observe that Wolfer et al’s approximation is
better for short times, but that the local theory given by (48) provides the best
approximation as time goes to infinity, cf. Fig. 3(b). Figure 4 shows the size
distribution function calculated at different times by using the local theory
(48) (dashed lines) and the numerical solution of the full discrete model. The
local theory yields higher cluster densities than the exact solution, a much
higher maximum density but it predicts a maximum size which is very close
to the local maximum of the real distribution function at large sizes.

11



0 5 10 15 20
0

0.2

0.4

t

c

(a)

0 50 100 150
0

0.2

0.4

t

c

(b)

Fig. 3. (a) Monomer concentration c(t) evaluated using: (i) the numerical solution
of the discrete equations of the model (solid line), (ii) the local theory (48) (dashed
line), (iii) Schaldach and Wolfer’s moment equations (dot-dashed line), and (iv) the
self-similar solution having a vertical asymptote at t = 0 (thin solid line). (b) Same
as in (a) for a larger range of times. All variables are written in dimensionless units.
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Fig. 4. Dimensionless size distribution function rk(t) calculated using the numerical
solution of the full model discrete equations (solid line) and the local theory (48)
(dashed line) at the nondimensional times 100, 200, 300, 400 and 500.
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4 Leading edge of the size distribution function

The previous local description of the size distribution function differs sub-
stantially from the numerical solution of the model equations for large sizes.
However, the maximum of the numerical rk coincides with the peak of the
approximate rk at k = kf(s), which is also its leading edge. To improve our
asymptotic theory, we should insert a moving boundary layer there. How? We
shall use the wave front theory which we introduced in our previous work on
homogeneous nucleation [4]. Firstly, let us rewrite (17) and (21) as

dσk

ds
= k1/3 (σk−1 − σk), k ≥ 3, (49)

σk = k1/3rk, (50)

c
dc

ds
+ 4 c2 + c

∞
∑

k=2

σk = 1. (51)

Secondly, let us use local coordinates about the inflection point of the wave
front leading edge in σk, k = K(s), for large k:

σk = S(X, s), X = k − K(s), 1 ≪ X ≪ K. (52)

Substitution of (52) in (49) yields

∂S

∂s
− ∂S

∂X

dK

ds
= (K1/3 +

1

3
K−2/3X + . . .)

(

− ∂S

∂X
+

1

2

∂2S

∂X2
+ . . .

)

.

Provided

dK

ds
= K1/3, (53)

the distinguished limit of the previous equation for S gives

∂S

∂s
+

1

3
K−2/3X

∂S

∂X
=

1

2
K1/3 ∂2S

∂X2
. (54)

A more detailed derivation using a book-keeping small parameter is included
in Appendix B. Note that the inflection point K(s) is different from the local
maximum of the distribution function for large sizes, kf < K. If we change
variables from the adaptive time s to the front location K, we find an equation
in which K scales as X2. Thus it is convenient to consider S as a function of
the new ‘time’ K and the similarity variable ξ = X/

√
K. Then,
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K
∂S

∂K
− ξ

6

∂S

∂ξ
=

1

2

∂2S

∂ξ2
, (55)

ξ =
k − K(s)
√

K(s)
. (56)

Equation (55) should be solved with boundary condition S(∞, K) = 0 and an
appropriate matching condition as ξ → −∞.

The solution of (53) is

K(s) =
(

2s

3
+ K

2/3
0

)3/2

, (57)

in which K0 is an arbitrary positive constant to be selected later. The solution
(28) with a(k) ∼ −3 + 3k2/3/2 yields the matching condition

σk = 2 c
(

s + 3 − 3

2
k2/3

)

+
∼ 2 c

(

3 − 3

2
K

2/3
0 − ξ K1/6

)

+
, (58)

in the overlap region:
√

K ≪ (K − k) ≪ K, as ξ → −∞. In Appendix C, we
show that the solution of (55) satisfying boundary and matching condition is

S(ξ, K) =
2

√

6π(K1/3 − K
1/3
0 )

t
∫

0

[c(t′)]2 e
−

[ξK1/6+s(t′)−3+ 3
2 K

2/3
0 ]

2

6 (K1/3
−K

1/3
0

) dt′. (59)

Clearly, the front solution (59) contributes to the moment M1/3 in (21) for
small times corresponding to k in the overlap region. Since S is matched to
a variable outer solution, it is convenient to pick a time tp(t) corresponding
to k in the overlap region to split the time interval (0, t) in (48) into two
subintervals. For 0 < t′ < tp(t), we use the front approximation (50), (52)
and (59) whereas we use the outer approximation (28) with (45) for times in
(tp(t), t). The patching time solves

s(tp) = ξp [K(s(t))]1/6 + 3 − 3

2
K

2/3
0 , (60)

for ξp in the overlap region. Since the width of the gaussian in (59) is
√

6, we
may choose ξp ≥

√
6. Up to the patching time, the contribution of the leading

edge (59) to the moment M1/3 in (21) is
∫

∞

−∞
S(ξ, K) K1/2dξ = 2 K1/3

∫ tp
0 [c(t′)]2 dt′.

Taking into account the approximation (28), we obtain

14



0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12

k

r k

Fig. 5. Nondimensional size distribution function rk(t) evaluated using the compos-
ite solution (61) - (62) (dashed line) and the numerical solution of the full model
discrete equations (solid line) at the nondimensional times 300, 400 and 500.

dc

dt
+ 4 c2 + 2

√

2

3
c

t
∫

tp(t)

[s(t) − s(t′) + 3]1/2[c(t′)]2dt′

+2 [K(s(t))]1/3 c

tp(t)
∫

0

[c(t′)]2dt′ = 1. (61)

Fig. 5 compares the numerical solution of the full discrete model equations to
the composite solution:

rk = 2k−1/3c(s(t) − a(k))+θ(K − ξp

√
K − k)

+
2 θ(k − K + ξp

√
K)

√

6π(K1/3 − K
1/3
0 )

t
∫

0

[c(t′)]2 e
−

[ξK1/6+s(t′)−3+ 3
2

K
2/3
0 ]

2

6 (K1/3
−K

1/3
0

) dt′, (62)

plus (61) for the monomer concentration. We have used the numerical values
K0 = 0.5 and ξp =

√
6 without looking for an optimal fit to the numerical

solution of the full model equations by varying K0 and ξp. The agreement
between our theory and the numerical solution of the full model is much better
than that achieved by using only the outer solution. Although our effective
small parameter is the reciprocal of the wave front location (and 1/K → 0 as
t → ∞), the poor agreement between the outer solution and the numerical
solution at large sizes precludes a better agreement between the composite
solution and the numerical solution.
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5 Moment closure

The composite solution is computationally costly if all we want to calculate
is the monomer concentration because we need to calculate K(s(t)), tp(t) and
c(s − a(k)) at each instant of time. A different approximation involving only
equations that are local in time was used by Schaldach and Wolfer [1] to
approximate the number densities of monomers, bubbles and helium. Note
that Equations (21), (23) and (24) would form a closed system of equations if
we could express M1/3 in terms of M0 and M1. Physically speaking, M1/3/M0

and M1/M0 have the meaning of average bubble radius and average helium
density. If we impose

M1

M0

≈ 4π

3

(

M1/3

M0

)3

=⇒ M1/3 ≈
(

3

4π

)1/3

M
1/3
1 M

2/3
0 , (63)

we obtain the following closed system of three differential equations [1]

dM0

ds
= 2c, (64)

dM1

ds
= 4 c +

(

3

4π

)1/3

M
1/3
1 M

2/3
0 , (65)

c
dc

ds
+ 4c2 +

(

3

4π

)1/3

c M
1/3
1 M

2/3
0 = 1, (66)

plus Eq. (20) relating s and the time. For long times, these equations possess
the same scaling symmetry as the continuum equations and their solutions
tend to a similarity solution for long times. A different closure assumption can
be obtained by combining the idea of preserving the scaling symmetry with a
closure assumption related to (63), as explained in Appendix D. The resulting
moment equations have solutions which become self-similar for appropriate
intervals of time, but these solutions approximate the numerical solution of
the kinetic equation less well than those of (64) - (66).

Figure 6 shows a comparison between the size distribution function (29) and
(45) calculated with the monomer concentration resulting from the moment
equations (64) - (66) and the numerical solution of the full model. We observe
that the maximum at large sizes is predicted to occur at much larger sizes.
Thus the moment equations provide a worse prediction than the outer solution
(48), and, of course, worse than the composite solution (61) - (62).
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Fig. 6. Nondimensional size distribution function rk(t) of (29) and (45) with
monomer concentration given by the moment equations (64) - (66) (dashed line)
and the numerical solution of the full model discrete equations (solid line). Times
are as in Fig. 3.

6 Conclusions

In Section 3, we have found the composite solution (61) - (62) to the discrete
kinetic equations. The outer approximation is a solution of the continuum
limit of the discrete equations corrected by the effects of discreteness. The in-
ner approximation follows from a wave front expansion previously introduced
for transient homogeneous nucleation [4]. A similar equation for the wave front
profile was obtained by King and Wattis in the case of the Becker-Döring equa-
tions with rate constants having a power law dependence on cluster size [5].
While in the case of nucleation the outer approximation was a simple con-
stant profile in the wake of the wave front, in the present case of growing
helium bubbles, the outer approximation is a time and size dependent func-
tion depending on the monomer concentration. The monomer concentration
satisfies an integrodifferential equation comprising contributions of both the
outer and the inner solutions. As time increases, the outer solution tries to
achieve a self-similar form in the variable χ = k/s3/2 corrected by discreteness
effects, as suggested by Fig. 2. The inner solution is determined by the posi-
tion of the wave front K(s(t)) and by the similarity variable ξ = (k−K)/

√
K,

which is different from χ. Inner and outer solution have an overlap domain
1 ≪

√
K ≪ (K − k) ≪ K and are patched at a point thereof to yield the

composite solution.

We have also compared our approximations to Schaldach and Wolfer’s mo-
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ment closure of Section 5 supplemented with the formulas (29) and (45) for
the size distribution function. Fig. 3 shows that the similarity solution for c(t)
is consistently above the numerical solution of the model, while the moment
closure solution is consistently below. Then the maximum of the size distri-
bution function approximated using the similarity solution (resp. the moment
closure theory) occurs before (resp. after) the real maximum. In contrast with
these approximations, the outer solution (48) yields a better match to the
monomer concentration for large times and to the location of the maximum of
the size distribution function. Corrected with the boundary layer formula, the
composite solution (61) - (62) gives the best match to the numerical solution
of all the approximations described in this paper.
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A Approximating the sums
∑k

j=2 j−α.

For 0 < α < 1 and k → ∞, these expressions are Riemann sums whose jth
term equals the area under a rectangle of height (j − 1)−α and basis 1. These
Riemann sums can be approximated by the integral minus the sum of the
areas of triangles of height [(j − 1)α − jα] and basis 1. We thus have

k
∑

j=2

j−α =
k
∑

j=1

j−α − 1 ≈ k1−α

1
∫

1/k

dx

xα
+

1

2

k
∑

j=2

[j−α − (j − 1)−α] − 1,

and therefore
k
∑

j=2

j−α ≈ k1−α

1 − α
− 5 − 3α

2 (1 − α)
+

1

2kα
.

The function a(k) is given by the sum with exponent 1/3, which yields (45).
Similarly, the half-width of the peak is given by σ(k),

σ(k)2 ≡
∞
∫

0

[s − a(k)]2 Rk(s) ds = R̂′′(0) − [R̂′(0)]2 =
k
∑

j=2

j−2/3

∼ 3k1/3 − 9

2
+

1

2 k2/3
(k → ∞).
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As explained in the text, the relative width of the peak of Rk(s), σ/a ∼
2k−1/2/

√
3 tends to 0 as k → ∞.

B Derivation of the equation for the wave front profile using a

book-keeping small parameter.

Let us insert

σk = S(X∗, s∗), X∗ = ǫγ

(

k − K∗(s∗)

ǫ

)

, s∗ = ǫ2/3s, ǫ → 0+,

in (49) instead of (52). The small parameter ǫ represents location of the wave
front at a typical large size. We find

ǫ2/3 ∂S

∂s∗
− ǫγ−1/3 ∂S

∂X∗

dK∗

ds∗
=

(

(K∗)1/3

ǫ1/3
+

ǫ2/3−γ

3
(K∗)−2/3X∗ + . . .

)

×
(

−ǫγ ∂S

∂X∗
+

ǫ2γ

2

∂2S

∂(X∗)2
+ . . .

)

,

from which

ǫ2/3

(

∂S

∂s∗
+

X∗

3(K∗)2/3

∂S

∂X∗

)

+ ǫγ−1/3 ∂S

∂X∗

(

(K∗)1/3 − dK∗

ds∗

)

=

ǫ2γ−1/3(K∗)1/3

2

∂2S

∂(X∗)2
+ . . .

Provided

dK∗

ds∗
= (K∗)1/3,

and γ = 1/2, we find the equation

∂S

∂s∗
+

X∗

3(K∗)2/3

∂S

∂X∗
=

(K∗)1/3

2

∂2S

∂(X∗)2
,

in the limit as ǫ → 0+. The previous two equations are (53) and (54) once we
revert to the variables s and K.
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C Solution of the equation for the leading front

Defining J = −∂S/∂ξ, we find the following equation for J :

K
∂J

∂K
− 1

6

∂(ξJ)

∂ξ
=

1

2

∂2J

∂ξ2
.

The Fourier transform of J(ξ, ·) satisfies the hyperbolic equation

K
∂Ĵ

∂K
+

η

6

∂Ĵ

∂η
= −η2

2
Ĵ ,

which is readily solved by the method of characteristics in terms of an arbitrary
initial condition Ĵ0(η0). Inverting the Fourier transform and going back to the
function S, we obtain

S(ξ, K) = S(K) +
1

√

6π[1 − (K0/K)1/3]

∞
∫

−∞

S0(ξ0) exp

[

− (ξ − ξ0)
2

6 [1 − (K0/K)1/3]

]

dξ0,

in which S(K) and S0(ξ0) are both arbitrary. As ξ → −∞, the integral can be
approximated by the Laplace method with the result S(ξ, K) ∼ S(K)+S0(ξ).

The matching condition (58) gives S0 ∼ 2 c(3 − K1/6ξ − 3K
2/3
0 /2) − S(K),

thereby yielding

S(ξ, K) =
2

√

6π[1 − (K0/K)1/3]

∫

c



K1/6ξ1 + 3 − 3K
2/3
0

2



 e
−

(ξ+ξ1)2

6 [1−(K0/K)1/3] dξ1.

Changing variables from ξ1 to s′ = K1/6ξ1 + 3 − 3K
2/3
0 /2, we find

S(ξ, K) =
2

√

6π(K1/3 − K
1/3
0 )

s
∫

0

c(s′) e
−

(

K1/6ξ−3+
3K

2/3
0
2

+s′

)2

6 (K1/3
−K

1/3
0

) ds′. (C.1)

The ends of the integration interval in this expression are set to 0 and s because
those are the extremes of the interval over which the monomer concentration
exists. Changing variables in this formula from s′ to the time t′, we obtain
(59).

The width of the Gaussian in (C.1) is
√

6. Thus a typical point in the overlap
region is kp = K − ξp

√
K with ξp ≥

√
6. The corresponding adaptive time is

sp = s + 3 − 3

2
k2/3

p ∼ ξp[K(s)]1/6 + 3 − 3

2
K

2/3
0 ,
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and the corresponding time is given by (60).

D Moment equations following from a closure assumption preserv-

ing scaling symmetry

Let us assume that the size distribution function has the scaling form

rk(s) =
M0(s)

2l1
M1(s)l20

r̃(x), (D.1)

x =
M0(s)l1
M1(s)l0

k, (D.2)

lµ =

∞
∫

0

xµr̃(x) dx. (D.3)

The definition (22) of the moments together with (D.1) - (D.3) imply

Mµ =
lµ

lµ1 l1−µ
0

Mµ
1 M1−µ

0 . (D.4)

We can use (D.4) for µ = 1/3 to close the system of equations (21), (23) and
(24), with the result

dM0

ds
= 2c, (D.5)

dM1

ds
= 4 c + λ M

1/3
1 M

2/3
0 , (D.6)

c
dc

ds
+ 4c2 + λ c M

1/3
1 M

2/3
0 = 1, (D.7)

ds

dt
= c, (D.8)

λ =
l1/3

l
1/3
1 l

2/3
0

. (D.9)

These equations become (64) - (66) if λ = (4π/3)−1/3. To make them com-
patible with the previously found similarity solution, we consider the reduced
system given by (D.5) and the approximate equations

dM1

ds
= λ M

1/3
1 M

2/3
0 =

1

c
, (D.10)
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which have the same scaling symmetry as in the case of the continuum limit.
Thus they have the similarity solution

c = C1s
−3/4, (D.11)

for a certain constant C1. From (D.5) and (D.10) (written as dM1/ds = 1/c),
we obtain

M0 = 8 C1s
1/4, M1 =

4 s7/4

7C1
, (D.12)

whereby (D.10) yields

C1 =
71/4

4
λ−3/4. (D.13)

We shall now use Eq. (35) for rk and (D.1) and (D.11) - (D.13) to find r̃.
Straightforward but lengthy calculations yield

r̃(x) =
l0

6 xM

(

x

xM

)

−1/3
[

1 −
(

x

xM

)2/3
]

−3/4

+

, (D.14)

xM =

(

7 l1
6 l1/3

)3/2

. (D.15)

With this reduced size distribution function we can check that (D.3) becomes
l0 = l0 for µ = 0 whereas it becomes

l1 =

√

√

√

√

7 l31
3πl31/3

l0 Γ(1/4)2

12
, (D.16)

l1/3 =

√

3 l1/3

7πl1

l0 Γ(1/4)2

6
, (D.17)

for µ = 1 and 1/3, respectively. These two last equations and (D.15) imply
that

l1/3 =
7

6
l1, xM = 1. (D.18)

Thus (D.18) are required for the reduced size distribution function to be con-
sistent with the definitions of the lµ. Using (D.16) - (D.18) in (D.9) and (D.13),
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it is possible to show that C1 = R0/2 given by (38) and we get the same sim-
ilarity solution as before.

Had we used Schaldach and Wolfer’s closure λ = (4π/3)−1/3, we would have
obtained the following similarity solution to the reduced system (D.5) and
(D.10):

c = C2s
−3/4, M0 = 4 C2s

1/4, M1 =
4

7 C2
s7/4, C2 =

1

2

(

7π

3

)1/4

.(D.19)

If we employ time instead of the variable s, (D.19) becomes

c =
(

4π

3

)1/7

7−2/7t−3/7, M0 =
(

4π

3

)2/7

73/7t1/7, M1 = t. (D.20)
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equations with size-dependent rate constants. J. Phys. A 35, 1357-1380.

23




